Predicting survival of children with CNS tumors using proton magnetic resonance spectroscopic imaging biomarkers.

نویسندگان

  • Karen J Marcus
  • Loukas G Astrakas
  • David Zurakowski
  • Maria K Zarifi
  • Dionyssios Mintzopoulos
  • Tina Young Poussaint
  • Douglas C Anthony
  • Umberto De Girolami
  • Peter McL Black
  • Nancy J Tarbell
  • A Aria Tzika
چکیده

Using brain proton magnetic resonance spectroscopic imaging (MRSI) in children with central nervous system (CNS) tumors, we tested the hypothesis that combining information from biologically important metabolites, at diagnosis and prior to treatment, would improve prediction of survival. We evaluated brain proton MRSI exams in 76 children (median age at diagnosis: 74 months) with brain tumors. Important biomarkers, choline-containing compounds (Cho), N-acetylaspartate (NAA), total creatine (tCr), lipids and/or lactate (L), were measured at the "highest Cho region" and normalized to the tCr of surrounding healthy tissue. Neuropathological grading was performed using World Health Organization (WHO) criteria. Fifty-eight of 76 (76%) patients were alive at the end of the study period. The mean survival time for all subjects was 52 months. Univariate analysis demonstrated that Cho, L, Cho/NAA and tumor grade differed significantly between survivors and non-survivors (P< or =0.05). Multiple logistic regression and stepwise multivariate Cox regression indicated that Cho + 0.1L was the only independent predictor of survival (likelihood ratio test = 10.27, P<0.001; Cox regression, P=0.004). The combined index Cho + 0.1L was more accurate and more specific predictor than Cho or Cho/NAA. Accuracy and specificity for Cho + 0.1L were 80% and 86%, respectively. We conclude that brain proton MRSI biomarkers predict survival of children with CNS tumors better than does standard histopathology. More accurate prediction using this non-invasive technique represents an important advance and may suggest more appropriate therapy, especially when diagnostic biopsy is not feasible.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Noninvasive magnetic resonance spectroscopic imaging biomarkers to predict the clinical grade of pediatric brain tumors.

The diagnosis and therapy of childhood brain tumors, most of which are low grade, can be complicated because of their frequent adjacent location to crucial structures, which limits diagnostic biopsy. Also, although new prognostic biomarkers identified by molecular analysis or DNA microarray gene profiling are promising, they too depend on invasive biopsy. Here, we test the hypothesis that combi...

متن کامل

Proton magnetic resonance spectroscopic imaging in children with recurrent primary brain tumors.

PURPOSE Proton magnetic resonance spectroscopic imaging ((1)H-MRSI) is a noninvasive technique for spatial characterization of biochemical markers in tissues. We measured the relative tumor concentrations of these biochemical markers in children with recurrent brain tumors and evaluated their potential prognostic significance. PATIENTS AND METHODS (1)H-MRSI was performed on 27 children with r...

متن کامل

Detection of Glioblastoma Multiforme Tumor in Magnetic Resonance Spectroscopy Based on Support Vector Machine

Introduction: The brain tumor is an abnormal growth of tissue in the brain, which is one of the most important challenges in neurology. Brain tumors have different types. Some brain tumors are benign and some brain tumors are cancerous and malignant. Glioblastoma Multiforme (GBM) is the most common and deadliest malignant brain tumor in adults. The average survival rate for peo...

متن کامل

Proton magnetic resonance spectroscopic imaging as a cancer biomarker for pediatric brain tumors (Review).

Magnetic resonance (MR) techniques offer a non-invasive, non-irradiating yet sensitive approach to diagnose and monitor cancer, which encompasses diverse processes affecting various aspects of pathophysiology. Techniques such as MR spectroscopy (MRS) have been developed and applied to monitor the metabolic aspects of cancer. Given that cancer is such a variable disease, biomarkers identified us...

متن کامل

P63: Automatic Detection of Glioblastoma Multiforme Tumors Using Magnetic Resonance Spectroscopy Data Based on Neural Network

Inflammation has been closely related to various forms of brain tumors. However, there is little knowledge about the role of inflammation in glioma. Grade IV glioma is formerly termed glioblastoma multiform (GBM). GBM is responsible for over 13,000 deaths per year in the America. Magnetic resonance imaging (MRI) is the most commonly used diagnostic method for GBM tumors. Recently, use of the MR...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • International journal of oncology

دوره 30 3  شماره 

صفحات  -

تاریخ انتشار 2007